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Abstract

We present three algorithms for the representation of
two-dimensional velocity fields with Haar wavelets and
compare their efficiency in data compression. These
approaches are: 1) to recast the 2D field as a 1D
signal, compute its Haar expansion, and map the 1D
expansion back to the 2D domain; 2) to perform the
tensor product of 1D wavelet bases in the x- and z-
directions and to compute the expansion of the 2D field
with respect to this tensorial basis; and 3) to build
a multi-resolution analysis from the two-dimensional
Haar scaling function and to find the orthogonal
complements between adjacent levels. We test these
approaches on a synthetic acoustic velocity field.

Introduction

Wavelet theory has long been served as an analysis tool
in geophysics and efficient discrete transform algorithms
are available (Beylkin et al, 1991; Mallat, 1989), as well
as classical Fourier analysis has been benefited from fast
Fourier transform algorithms. In this paper we revisit
these algorithms with the aim of seeking a more compact
representation of seismic velocity fields, benefiting from the
multiscale features of wavelet functions.

In this preliminary study, we focus on two-dimensional
acoustic velocity fields and consider the classical Haar
wavelet. We review the basics of multi-resolution analysis
(see, e.g., Blatter, 1998) and proceed to the construction of
the one- and two-dimensional algorithms. The algorithm
referred herein as the third approach is the classical
approach of multi-dimensional fast wavelet transform
(Beylkin et al, 1991). We contrast this algorithm with two
other intuitive strategies that have not been thoroughly
documented in the literature.

Theory

A simple way to (approximately) represent signals at a
prescribed resolution is to expand them into piecewise
functions:

f (t) =
∞

∑
n=−∞

f j,nφ j,n(t), φ j,n(t) := 2− j/2
φ

( t
2 j −n

)
, (1)

where φ(t) = 1 for t ∈ [0,1) and φ(t) = 0 otherwise. Similarly
to Fourier series, we have

f j,n =
〈

f ,φ j,n
〉
=
∫

∞

−∞

f (t)φ j,n(t)dt. (2)

The resolution is driven by the scaling parameter j. In
general, a signal may present variation in several scales,
so it would be convenient to consider multiple resolutions
in the representation of the signal:

f (t) =
∞

∑
j=−∞

∞

∑
n=−∞

f j,nφ j,n(t). (3)

The drawback of this representation is that f j,n are no
longer Fourier coefficients, since the basis functions with
scaling parameter j depend on the basis functions of the
level j−1, thus are not orthogonal. For instance,

φ(t) = φ0,0(t) =
φ−1,0(t)+φ−1,1(t)√

2
. (4)

However, a simple modification of the basis functions,

ψ j,n(t) := 2− j/2
ψ

( t
2 j −n

)
, ψ(t) =

φ−1,0(t)−φ−1,1(t)√
2

, (5)

leads us back to an orthogonal system (Walter, 1994), and
the following representation holds:

f (t) =
∞

∑
j=−∞

∞

∑
n=−∞

f j,nψ j,n(t), f j,n =
〈

f ,φ j,n
〉
. (6)

The functions φ and ψ are known as the Haar scaling
function and the mother wavelet, respectively. In wavelet
theory, the vector spaces V j sppaned by {φ j,n(t)}n∈Z satisfy

...⊂V2 ⊂V1 ⊂V0 ⊂V−1 ⊂ ...⊂V j ⊂V j−1 ⊂ ..., (7)

constituting a multi-resolution analysis, whereas the vector
spaces WJ sppaned by {ψ j,n(t)}n∈Z serve as orthogonal
complements between consecutive levels j−1 and j, i.e.,

V j−1 =V j⊕W j, j ∈ Z. (8)

In particular, we can derive from (8) the relation V0 = W1⊕
W2⊕ . . .⊕WJ⊕VJ , in order that can approximate f in V0 as

f̃ (t) =
〈

f ,φJ,0
〉

φJ,0(t)+
J

∑
j=1

+∞

∑
n=−∞

〈
f ,ψ j,n

〉
ψ j,n(t). (9)

If f (t) 6= 0 only in a bounded domain, the number of nonzero
coefficients

〈
f ,φ j,n

〉
is finite (Blatter, 1998). In particular, if

f (t) = 0 if t 6∈ [0,2J), then expansion (9) reduces to

f̃ (t) = f̄ +
J

∑
j=1

2J− j−1

∑
n=0

d j,nψ j,n(t), d j,n =
〈

f ,ψ j,n
〉
, (10)
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and f̄ is the mean of f . We employ a standard recursive
algorithm to compute the Fourier coeffients d j,n, known as
Mallat’s algorithm. Let us define the auxiliary coefficients
s j,n =

〈
f ,φ j,n

〉
. Extending relations (4)-(5) to φ j,n(t) and

ψ j,n(t) and replacing them into s j,n and j,n, we find

s j,n =
s j−1,2n + s j−1,2n+1√

2
, d j,n =

s j−1,2n− s j−1,2n+1√
2

. (11)

These equations allow us to retrieve d j,n from the initial data
s0,n =

〈
f ,φ0,n

〉
. In particular, we know discrete samples of

the signal f , i.e., f = [ f0, . . . f2J−1] we begin with s0,n = fn
(Blatter, 1998).

Representation of 2D data

We now proceed to the representation of a two-
dimensional velocity field in the form

vi, j, 0≤ i, j ≤ N, N = 2J−1. (12)

First approach: 1D Haar wavelets

The first strategy considered herein is to recast the velocity
field (12) as the signal

f = [v0,0,v0,1, . . . ,v0,N ,v1,0, . . . ,v1,N , . . . ,vN,N ], (13)

compute the Haar expansion (10) with the desired number
of terms, and compute the approximate field

ṽi, j = f̃ (N i+ j), 0≤ i, j ≤ N. (14)

In summary, we have the following algorithm:

J̃← 2J;
s0,N i+ j← vi, j (0≤ i, j ≤ N);
for j = 1, . . . , J̃ do

for n = 0, . . . ,2J̃− j−1 do
s j,n← (s j−1,2n + s j−1,2n+1)

√
2;

d j,n← (s j−1,2n− s j−1,2n+1)
√

2;
end for

end for
Compute f̃ in (10);
ṽi, j← f̃ (N i+ j), (0≤ i, j ≤ N);

Second approach: a tensor product basis

One natural step to improve of the above strategy is to use
the Haar approximation in each spatial coordinate. In the
following we describe how to implement this.

We have used the following basis functions in the
representation (10) of a signal f (t):

St = {{φJ,0(t)},{{ψ j,n(t)}2J− j−1
n=0 }J

j=1}. (15)

Let us build the set Sxz = {u(x)v(z), u,v∈ St} from the tensor
product of functions in St in the x− and z−directions, i.e.,

Sxz = {{φJ,0(x)φJ,0(z)} , {{φJ,0(x)ψ j,n(z)}2J− j−1
n=0 }J

j=1,

{{ψ j,n(x)φJ,0(z)}2J− j−1
n=0 }J

j=1, (16)

{{{{ψ jx,nx(x)ψ jz,nz(z)}
2J− j−1
nx=0 }

J
jx=1}

2J− j−1
nz=0 }

J
jz=1}.

Considering the 2D inner product

〈 f ,g〉=
∫

∞

−∞

∫
∞

−∞

f (x,z)g(x,z)dx dz, (17)

we have that the functions in Sxz inherit the orthogonality
from St in the sense that, it f = u1v1 and g = u2v2 with
u1,u2,v1,v2 ∈ St ,

〈 f ,g〉=

{
1, (u1,v1) = (u2,v2),

0, (u1,v1) 6= (u2,v2).
(18)

Thus, the coefficients in the 2D expansion

f̃ (x,z) = d̃0
φJ,0(x)φJ,0(z)+

J

∑
j=1

2J− j−1

∑
n=0

d̃z
j,nφJ,0(x)ψ j,n(z)

+
J

∑
j=1

2J− j−1

∑
n=0

d̃x
j,nψ j,n(x)φJ,0(z) (19)

+
J

∑
jx=1

2J− j−1

∑
nx=0

J

∑
jz=1

2J− j−1

∑
nz=0

dxz
nx, jx,nz, jz ψ jx,nx(x)ψ jz,nz(z)

satisfy

d̃0 =
〈

f ,φJ,0(x)φJ,0(z)
〉
, d̃x

j,n =
〈

f ,ψ j,n(x)φJ,0(z)
〉
, (20)

d̃z
j,n =

〈
f ,φJ,0(x)ψ j,n(z)

〉
, dxz

jx,nx, jz,nz
=
〈

f ,ψ jx,nx(x)ψ jz,nz(z)
〉
.

Since φJ,0(t) = 2−J/2 for t ∈ [0,2J), we find

f̃ (x,z) = f̄ +
J

∑
j=1

2J− j−1

∑
n=0

dz
j,nψ j,n(z)+dx

j,nψ j,n(x) (21)

+
J

∑
jx=1

2J− j−1

∑
nx=0

J

∑
jz=1

2J− j−1

∑
nz=0

dxz
jx,nx, jz,nz

ψ jx,nx(x)ψ jz,nz(z)

for (x,z) ∈ [0,2J)× [0,2J), where f̄ is the mean of f over
[0,2J)× [0,2J) and

dx
j,n = 2−J 〈 f ,ψ j,n(x)

〉
, dz

j,n = 2−J 〈 f ,ψ j,n(z)
〉
. (22)

Let us define the auxiliary coefficients

sx
j,n = 2−J 〈 f ,φ j,n(x)

〉
, sz

j,n = 2−J 〈 f ,φ j,n(z)
〉
. (23)

Analogously to (11), we find

sx
j,n =

sx
j−1,2n + sx

j−1,2n+1√
2

, dx
j,n =

sx
j−1,2n− sx

j−1,2n+1√
2

, (24)

sz
j,n =

sz
j−1,2n + sz

j−1,2n+1√
2

, dz
j,n =

sz
j−1,2n− sz

j−1,2n+1√
2

. (25)

On the other hand, the computation of dxz requires two
families of auxiliary coefficients:

s jx,nx, jz,nz =
〈

f ,φ jx,nx(x)φ jz,nz(z)
〉
, (26)

s̃ jx,nx, jz,nz =
〈

f ,φ jx,nx(x)ψ jz,nz(z)
〉
. (27)
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The recursion (11) in the x−directions yields

s̃ jx,nx, jz,nz =
s̃ jx−1,2nx, jz,nz + s̃ jx−1,2nx+1, jz,nz√

2
, (28)

dxz
jx,nx, jz,nz

=
s̃ jx−1,2nx, jz,nz − s̃ jx−1,2nx+1, jz,nz√

2
. (29)

By repeating the recursive steps (28)-(29), d jx,nx, jz,nz

is eventually written with respect to s̃0,nx, jz,nz . These
coefficients in turn are determined by a recursion in the
z−direction:

s̃0,nx, jz,nz =
s0,nx, jz−1,2nz − s0,nx, jz−1,2nz+1√

2
, (30)

where s0,nx, jz,nz are computed in a similar fashion:

s0,nx, jz,nz =
s0,nx, jz−1,2nz + s0,nx, jz−1,2nz+1√

2
. (31)

It follows from (24)-(31) that all coefficients in (21) can be
determined from sx

0,nx
, sz

0,nz
, and s0,nx,0,nz for nx,nz = 0, . . .N.

However, we can also verify that

sx
0,nx

=
N

∑
k=0

s0,nx,0,k, sz
0,nz

=
N

∑
k=0

s0,k,0,nz , (32)

in order that just the coefficients s0,nx,0,nz are sufficient
to build the expansion (21). As in the 1D case, we set
s0,nx,0,nz = vnx,nz (nx,nz = 0, . . .N). The algorithm for this
approach is then given as follows:

s0,nx,0,nz ← vnx,nz (0≤ nx,nz ≤ N);
sx

0,nx
← ∑

N
k=0 s0,nx,0,k;

sz
0,nz
← ∑

N
k=0 s0,k,0,nz ;

for j = 1, . . . ,J do
for n = 0, . . . ,2J− j−1 do

sx
j,n← (sx

j−1,2n + sx
j−1,2n+1)/

√
2;

dx
j,n← (sx

j−1,2n− sx
j−1,2n+1)/

√
2;

sz
j,n← (sz

j−1,2n + sz
j−1,2n+1)/

√
2;

dz
j,n← (sz

j−1,2n− sz
j−1,2n+1)/

√
2;

end for
end for
for nx = 0, . . . ,2J−1 do

for jz = 1, . . . ,J do
for nz = 0, . . . ,2J− jz −1 do

s0,nx, jz,nz ← (s0,nx, jz−1,2nz + s0,nx, jz−1,2nz+1)/
√

2;
s̃0,nx, jz,nz ← (s0,nx, jz−1,2nz − s0,nx, jz−1,2nz+1)/

√
2;

end for
end for

end for
for jx = 1, . . . ,J do

for nx = 0, . . . ,2J− jx −1 do
for jz = 1, . . . ,J do

for nz = 0, . . . ,2J− jz −1 do
s̃ jx,nx, jz,nz ← (s̃ jx−1,2nx, jz,nz + s̃ jx−1,2nx+1, jz,nz)/

√
2;

dxz
jx,nx, jz,nz

← (s̃ jx−1,2nx, jz,nz − s̃ jx−1,2nx+1, jz,nz)/
√

2;
end for

end for
end for

end for
Compute f̃ in (21);

Third approach: the non-standard form

Beylkin (1993) refers to tensor basis (16) as the standard
form and denominates non-standard form the basis
constructed from an orthogonal decomposition of the 2D
multi-resolution analysis . . .V1 ⊂ V0 ⊂ V−1 ⊂ . . . formed by
the tensor-product spaces

V j =V x
j ⊗V z

j ,

{
V x

j = span{φ j,n(x)}n∈Z,

V z
j = span{φ j,n(z)}n∈Z,

Following Mallat (1989), let us decompose V j−1 as a direct
sum of V j and its orthogonal complement W j employing the
orthogonal decompositions of the spaces V x

j−1 and V y
j−1:

V j−1 = V x
j−1⊗V z

j−1 =
(

V x
j ⊕ W x

j

)
⊗
(

V z
j ⊕ W z

j

)
= (V x

j ⊗V z
j )⊕ (V x

j ⊗W z
j )⊕ (W x

j ⊗ V z
j )⊕ ( W x

j ⊗W z
j ),

i.e., V j−1 =V j⊕ W j, where W j is defined as

W j = (V x
j ⊗W z

j )⊕ (W x
j ⊗ V z

j )⊕ (W x
j ⊗W z

j ). (33)

In particular for j = 0, we have that

V x
0 = span{φ(x−n)}n∈Z, W x

0 = span{ψ(x−n)}n∈Z, (34)
V z

0 = span{φ(z−n)}n∈Z, W z
0 = span{ψ(z−n)}n∈Z, (35)

thus
V x

0 ⊗W z
0 = span{φ(x−nx)ψ(z−nz)}nx,nz∈Z,

W x
0 ⊗V z

0 = span{ψ(x−nx)φ(z−nz)}nx,nz∈Z,

W x
0 ⊗W z

0 = span{ψ(x−nx)ψ(z−nz)}nx,nz∈Z.

(36)

In general, we have that

W j = span{ψa
j,nx,nz

,ψb
j,nx,nz

,ψc
j,nx,nz

}nx,nz∈Z, (37)
ψa

j,nx,nz
(x,z) = φ j,nx(x)ψ j,nz(z),

ψb
j,nx,nz

(x,z) = ψ j,nx(x)φ j,nz(z),

ψc
j,nx,nz

(x,z) = ψ j,nx(x)ψ j,nz(z),
(38)

and the representation corresponding to (19) is given as

f̃ (x,z) = f̄ +
J

∑
j=1

2J− j−1

∑
nx=0

2J− j−1

∑
nz=0

(
a j,nx,nz ψ

a
j,nx

(x,z) (39)

+ b j,nx,nz ψ
b
j,nx

(x,z)+ c j,nx,nz ψ
c
j,nx

(x,z)

)
,

for (x,z) ∈ [0,2J) × [0,2J), where a j,nx,nz = 〈 f ,ψa
j,nx,nz

〉,
b j,nx,nz = 〈 f ,ψb

j,nx,nz
〉, and c j,nx,nz = 〈 f ,ψc

j,nx,nz
〉. In order to

recursively compute these coefficients, let us define

s j,nx,nz =
〈

f ,φ j,nx(x)φ j,nz(z)
〉
, (40)

which satisfies, as in (11),

s j,nx,nz =
1
2
(s j−1,2nx,2nz + s j−1,2nx,2nz+1

+ s j−1,2nx+1,2nz + s j−1,2nx+1,2nz+1), (41)
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and analogously,

a j,nx,nz =
1
2
(s j−1,2nx,2nz − s j−1,2nx,2nz+1

+ s j−1,2nx+1,2nz − s j−1,2nx+1,2nz+1), (42)

b j,nx,nz =
1
2
(s j−1,2nx,2nz + s j−1,2nx,2nz+1

− s j−1,2nx+1,2nz − s j−1,2nx+1,2nz+1), (43)

c j,nx,nz =
1
2
(s j−1,2nx,2nz − s j−1,2nx,2nz+1

− s j−1,2nx+1,2nz + s j−1,2nx+1,2nz+1). (44)

Thus, for each 1≤ j ≤ J, the coefficients a j,nx,nz , b j,nx,nz and
c j,nx,nz depend on s0,nx,nz = vnx,nz for nx,nz = 0, . . .N. This
leads to the following algorithm:

s0,nx,nz ← vnx,nz (0≤ nx,nz ≤ N);
for j = 1, . . . ,J do

for nx = 0, . . . ,2J− j−1 do
for nz = 0, . . . ,2J− j−1 do

s j,nx,nz ← (s j−1,2nx,2nz + s j−1,2nx,2nz+1+
s j−1,2nx+1,2nz + s j−1,2nx+1,2nz+1)/2;
a j,nx,nz ← (s j−1,2nx,2nz − s j−1,2nx,2nz+1+
s j−1,2nx+1,2nz − s j−1,2nx+1,2nz+1)/2;
b j,nx,nz ← (s j−1,2nx,2nz + s j−1,2nx,2nz+1−
s j−1,2nx+1,2nz − s j−1,2nx+1,2nz+1)/2;
c j,nx,nz ← (s j−1,2nx,2nz − s j−1,2nx,2nz+1−
s j−1,2nx+1,2nz + s j−1,2nx+1,2nz+1)/2;

end for
end for

end for
Compute f̃ in (39);

Examples

In order to illustrate the three algorithms outlined in the
previous section, let us consider the synthetic velocity field
composed of 32×32 blocks shown in Figure 1.

Figure 1: The synthetic velocity field.

The representations (10), (21) and (39) exactly reproduce
the synthetic velocity field. These expansions have
respectively 429, 324, and 211 nonzero coefficients, in
contrast with the 210 coefficients {vi, j}31

i, j=0 of the original
data, incurring in memory savings as high as 80%.

For further comparison, we show in Figures 2 and 3 the
truncated representations of the velocity field by the first
and second approaches when the number of coefficients
is close to 211, the number of nonzero coefficients of the
third approach. For the first approach we dropped all
coefficients whose magnitude was below 1.0, whereas in
the second approach we dropped all coefficients whose
magnitude was below 0.3.

Figure 2: Truncated representation of the velocity field by
the first approach (Haar coefficients of magnitude below
1.0 were dropped).

Figure 3: Truncated representation of the velocity field
by the second approach (Haar coefficients of magnitude
below 0.3 were dropped).

Conclusions

We have outlined three algorithms to efficiently represent
two-dimensional velocity fields based on the Haar wavelet.
Revisiting the classical wavelet theory, we illustrated how
the use of linear algebra concepts such as direct sums
leads to a multiscale Fourier-type representation of data
to the design of an algorithm with 2D Haar wavelets that is
simpler than the tensor-product algorithm.

The savings in the numerical example confirm the
benefits of a multiscale representation over a finest-scale
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representation of data. Note that the third approach
provided the best compression rate in this example.
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Appendix: further considerations on two-dimensional
bases

Let us further compare the 2D bases employed in the latter
two approaches presented in this paper. Note that the
representation (39) has a total of

1+
J

∑
j=1

2J− j−1

∑
nx=0

2J− j−1

∑
nz=0

(3) = 1+3
J

∑
j=1

22(J− j) = 4J

coefficients (taking also into account the zeroth order term
f̄ ), which is consistent with the

1+2
J

∑
j=1

2J− j +

(
J

∑
j=1

2J− j

)2

= 4J

terms in (19), and the (2J)2 terms in the vector space

V J
0 = span{{φ0,nx(x)φ0,nz(x)}

2J−1
nz=0}

2J−1
nx=0. (45)

The sets of functions (45), and the functions associated
with the expansions (19) and (39), all serve as basis
functions for the space V J

0 . Figures 4-6 illustrate these
bases for J = 2.

Figure 4: Basis functions (45) of the space V 2
0 .

Figure 5: Basis functions (19) of the space V 2
0 .

Figure 6: Basis functions (39) of the space V 2
0 .
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